ARTIGOS
André L. Moras
Universidade Estadual de Campinas (UNICAMP)
Paulo H.D. Ferreira
Universidade Federal de São Carlos (UFSCar)
Newton C. Frateschi
Universidade Estadual de Campinas (UNICAMP)
Luís A. M. Barêa
Universidade Federal de São Carlos (UFSCar)
A fotônica integrada é uma importante área tecnológica e científica que permite criar e manipular a luz de forma controlada e precisa em regiões de dimensões reduzidas. Assim como a eletrônica permite controlar a eletricidade e os elétrons em chips eletrônicos, a fotônica integrada permite controlar a luz e os fótons em chips fotônicos miniaturizados. Por meio da fotônica integrada, é possível criar dispositivos ópticos denominados de guias de ondas, os quais são capazes de confinar e guiar a luz em circuitos fotônicos como descrevemos neste artigo.
[1] L.A.M. Barea et al., “Spectral Engineering With CMOS Compatible SOI Photonic Molecules“, IEEE Photonics Journal, vol. 5, no. 6, pp. 2202717, (2013) Art n° 2202717, doi: 10.1109/JPHOT.2013.2289977.
[2] L.A.M. Barea et al., “Silicon technology compatible photonic molecules for compact optical signal processing”. Applied Physics Letters 103, 201102 (2013) doi: 10.1063/1.4829743
[3] M.C.M.M. Souza et al., “Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing,” Opt. Express 22, 10430 (2014) doi: 10.1364/OE.22.010430
[4] M.C.M.M. Souza et al., “Spectral engineering with coupled microcavities: active control of resonant mode-splitting” Opt. Lett. 40, 3332 (2015) doi:10.1364/OL.40.003332
[5] M.C.M.M. Souza et al., “Modeling quasi-dark states with temporal coupled-mode theory,” Opt. Express 24, 18960 (2016). doi: 10.1364/OE.24.018960
[6] G.F.M. de Rezende et al., “Tunable, Recon-figurable and Active Silicon Photonic Devices employing Photonic Molecules,” in Latin America Optics and Photonics Conference (2018), paper Th2A.3, doi: 10.1364/LAOP.2018.Th2A.3.
[7] Ó.B. Helgason et al., “Dissipative solitons in photonic molecules”. Nat. Photonics 15, 305 (2021). doi: 10.1038/s41566-020-00757-9
[8] Kun Liao et al., “Photonic molecule quantum optics,” Adv. Opt. Photon. 12, 60 (2020). doi: 10.1364/OE.27.037579
[9] S.Woska et al., “Tunable coupling of chip-scale photonic molecules via thermal actuation,” Opt. Mater. Express 11, 3194 (2021). doi: 10.1364/OME.432655
[10] M. Borghi et al., “Four Wave Mixing control in a photonic molecule made by silicon microring resonators”. Sci Rep 9, 408 (2019). doi: 10.1038/s41598-018-36694-5.
[11] M.C.M.M. Souza et al., (2016). “Tunable photo-nic molecules for spectral engineering in dense photonic integration”. Future Trends in Microelectronics: Journey into the Unknown, John Wiley & Sons Inc., Hoboken, NJ, USA.
[12] A.L. Moras et al., “Development of SOI sensor using simulations based on the effective index method”, in Frontiers in Optics + Laser Science (2022), paper JTu5A.82, doi: 10.1364/FIO.2022.JTu5A.82.
[13] A.L. Moras et al., “Silicon nitride photonic molecules for robust sensing applications,” in Frontiers in Optics / Laser Science (2020), paper JTh4B.12. doi: 10.1364/FIO.2020.JTh4B.12.
[14] L.A.M. Barea et al., “Photonic molecules for application in silicon-on-insulator optical sensors“, Proc. SPIE 10537, Silicon Photonics XIII, 105371B (2018). doi: 10.1117/12.2287844.
[15] X. Zhou et al., “On-Chip Biological and Chemical Sensing With Reversed Fano Lineshape Enabled by Embedded Microring Resonators” IEEE Journal of Selected Topics in Quantum Electronics, 20 (3), 35 (2014). doi: 10.1109/JSTQE.2013.2294465.
[16] Andre L. Moras et al., “Integrated Photonic Platform for Robust Differential Refractive Index Sensor“, IEEE Photonics Journal 12 (5), 3024856, (2020). doi:10.1109/jphot.2020.3024856
[17] D. Kim et al., “On-chip integrated differential optical microring refractive index sensing platform based on a laminar flow scheme,” Opt. Lett. 40, 4106 (2015).
[18] X. Tu et al., “Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20 (3), 2640 (2012). doi: 10.1364/OE.20.002640
[19] L. Jin et al., “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett., 36 (7), 1128 (2011). doi: 10.1364/OL.36.001128.
[20] L.A.M. Barea et al., Patente: Privilégio de Inovação. N°do registro: BR1020170270157, “BIOSSENSOR ÓPTICO INTEGRADO, MÉTODO DE DETECÇÃO E USOS DO BIOSSENSOR“, Instituição de registro: INPI – Depósito: 14/12/2017. Concessão: 16/01/2024.
[21] A.L. Moras et al., “Enhanced Sensitivity Photonic Molecule Sensor based on Embedded Tapered Microring Resonators,” in 2022 IEEE Photonics Conference (IPC), (2022), 1. doi: 10.1109/IPC53466.2022.9975699.
[22] J. Wiersig, “Review of exceptional point-based sensors,” Photon. Res., PRJ 8 (9), 1457 (2020). doi: 10.1364/PRJ.396115.
[23] J. Wang et al., “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions” Sci Rep. 4 (1), 7528 (2014). doi: 10.1038/srep07528.