ARTIGOS
Jonas H. Osório
Universidade Estadual de Campinas (UNICAMP)
Cristiano M. B. Cordeiro
Universidade Estadual de Campinas (UNICAMP)
Nos anos 1990, o conceito de se utilizar fibras ópticas micro-estruturadas revolu- cionou o campo de atuação desta família de guias de onda. À época, pôde-se demonstrar que a existência de buracos de ar adequadamente dispostos na seção transversal da fibra oferecia um controle de suas propriedades a nível sem precedentes, motivando a realização de uma ampla gama de aplicações inacessíveis a partir do uso de fibras ópticas con- vencionais. Tais aplicações abrangeram diversas áreas em fotônica, a exemplo do campo da óptica não-linear e o de sensoriamento.
[1] F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 5853, 1118-1121 (2007).
[2] Y. Y. Wang et al. , “Low loss broadband transmission in hypocycloid-core kagome hollow- core photonic crystal fiber,” Optics Letters 36, 669-671 (2011).
[3] M. Chafer et al., “1-km hollow-core fiber with loss at the silica Rayleigh limit in the green spectral region,” IEEE Photonics Technology Letters 31, 9 (2019).
[4] J. H. Osório et al., “Hollow-core fibers with reduced surface roughness and ultralow loss in the short-wavelength range,” Nature Communications 14, 1146 (2023).
[5] F. Amrani et al., “Low-loss single-mode hybrid- lattice hollow-core photonic-crystal fibre,” Light: Science and Applications 10, 7 (2021).
[6] G. T. Jasion et al., “0.174 dB/km hollow core double nested antiresonant nodeless fiber (DNANF),” Optical Fiber Communication Conference 2022, paper Th4C.7.
[7] M. Chafer et al., “Near- and middle-ultraviolet reconfigurable Raman source using a record-low UV/visible transmission loss inhibited-coupling hollow-core fiber,” Optics & Laser Technology 147, 107678 (2022).
[8] A. I. Adamu et al., “Deep-UV to mid-IR supercontinuum generation driven by mid-IR ultrashort pulses in a gas-filled hollow-core fiber,” Scientific Reports 9, 4446 (2019).
[9] B. Debord et al., “2.6 mJ energy and 81 GW peak power femtosecond laser-pulse delivery and spectral broadening in inhibited coupling Kagome fiber,” CLEO:2015, paper STh4L.7.
[10] H. C. H. Mulvad et al., “Kilowatt-average- power single-mode laser light transmission over kilometre-scale hollow-core fibre,” Nature Photonics 16, 448-453 (2022).
[11] J. H. Osório et al., “Hollow-core photonic crystal fibers for Power-over-Fiber systems,” Optical Fiber Technology 73, 103041 (2022).
[12] P. Zhao et al., “Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber,” Nature Communications 11, 847 (2020).
[13] E. Miele et al., “Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes,” Nature Communications 13, 1651 (2022).
[14] W. M. Guimarães, C. M. B. Cordeiro, M. A. R. Franco, J. H. Osório, “Angle-resolved hollow-core fiber curvature sensing approach,” Fibers 9, 11, 72 (2021).
[15] J. H. Osório et al. “Hollow-core fiber-based speckle displacement sensor,” arXiv:2211.10217 (2022).
[16] P. Poggiolini, F. Poletti, “Opportunities and challenges for long-distance transmission in hollow-core fibers,” J. Light. Technol.,” 40, 6, 1605- 1616 (2022).